top of page

Publications

Publication List
(since 2022)

1 / PI-led publications

 

1.1. Zhang, X.-J., Angelopoulos, V., Mourenas, D., Artemyev, A. V., Tsai, E., and Wilkins, C. (2022), Characteristics of Electron Microburst Precipitation based on High-Resolution ELFIN Measurements, Journal of Geophysical Research: Space Physics, 127, e2022JA030509.

1.2. Zhang, X.-J., Artemyev, A. V., Angelopoulos, V., Tsai, E., Wilkins, C., Kasahara, S., Mourenas, D., et al. (2022), Superfast Precipitation of Energetic Electrons in Earth’s Radiation Belts, Nat Commun, 13, 1611, https://doi.org/10.1038/s41467-022-29291-8. (Editor’s Highlight)

2 / PI-co-authored publications

2.1 Artemyev, A. V., Angelopoulos, V., Zhang, X.-J., Runov, A., et al. (2022), Thinning of the magnetotail current sheet inferred from low-altitude observations of energetic electrons, Journal of Geophysical Research: Space Physics, e2022JA030705.

​

2.2 Artemyev, A. V., Mourenas, D., Zhang, X.-J., and Vainchtein, D., (2022), On the incorporation of nonlinear resonant wave-particle interactions into radiation belt models, 127, e2022JA030853.

​

2.3 An, X., Artemyev, A. V., Angelopoulos, V., Zhang, X.-J., Mourenas, D., and Bortnik, J. (2022), Nonresonant Scattering of Relativistic Electrons by Electromagnetic Ion Cyclotron Waves in Earth’s Radiation Belts, Physical Review Letters, 129, 10.1103/PhysRevLett.129.135101.

​

2.4 Mourenas, D., Agapitov, O., Artemyev, A. V., and Zhang, X.-J. (2022), A climatology of long-duration high 2-MeV electron flux periods in the outer radiation belt, Journal of Geophysical Research: Space Physics, 127, e2022JA030661.

​

2.5 Grach, V., Artemyev, A. V., Demekhov. A., Zhang, X.-J., et al. (2022), Relativistic Electron Precipitation by EMIC Waves: Importance of Nonlinear Resonant Effects, Geophys. Res. Lett., 49, e2022GL099994.

​

2.6 Tonoian, D. S., Artemyev, A. V., Zhang, X.-J., Shevelev, M. M., and Vainchtein, D. L. (2022), Resonance broadening effect for relativistic electron interaction with electromagnetic ion cyclotron waves, Physics of Plasmas, 29, 082903, https://doi.org/10.1063/5.0101792.

​

2.7 Shen, Y., Artemyev, A. V., Zhang, X.-J., Angelopoulos, V., et al. (2022), Tens to hundreds of keV electron precipitation driven by kinetic Alfvén waves during an electron injection, Journal of Geophysical Research: Space Physics, 127, e2022JA030360.

​

2.8 Gao, L., Vainchtein, D., Artemyev, A. V., and Zhang, X.-J. (2022), Statistics of whistler-mode waves in the near-Earth plasma sheet, Journal of Geophysical Research: Space Physics, 127, e2022JA030603.

​

2.9 Shen, Y., Artemyev, A. V., Vasko, I. Y., Zhang, X.-J., Angelopoulos, V., et al. (2022), Energetic electron scattering by kinetic Alfvén waves at strong magnetic field gradients of dipolarization front, Phys. Plasmas, 29, 082901, https://doi.org/10.1063/5.0096338.

​

2.10 Zhang, X., Angelopoulos, V., Artemyev, A. V., Zhang, X.-J., An, X., & Liu, J. (2022), Wavelength measurements of electron cyclotron harmonic waves in Earth's magnetotail, Journal of Geophysical Research: Space Physics, 127, e2022JA030500.

​

2.11 Artemyev, A. V., Zhang, X.-J., Zou, Y., Mourenas, D., Angelopoulos, V., Vainchtein, D., Tsai, E., Wilkins, C. (2022), On the nature of intense sub-relativistic electron precipitation. Journal of Geophysical Research: Space Physics, 127, e2022JA030571.

​

2.12 Bashir, M. F., Artemyev, A., Zhang, X.-J., & Angelopoulos, V. (2022), Hot plasma effects on electron resonant scattering by electromagnetic ion cyclotron waves, Geophysical Research Letters, 49, e2022GL099229.

​

2.13 Mourenas D., Zhang, X.-J., Nunn, D., Artemyev, A. V., Angelopoulos, V., Tsai, E., Wilkins, C. (2022), Short Chorus Wave Packets: Generation within Chorus Elements, Statistics, and Consequences on Energetic Electron Precipitation, Journal of Geophysical Research: Space Physics, 127, e2022JA030310.

​

2.14 Tsai, E., Artemyev, A. V., Zhang, X.-J., and Angelopoulos, V. (2022), Relativistic electron precipitation driven by non-linear resonance with whistler-mode waves, Journal of Geophysical Research: Space Physics, 127, e2022JA030338.

​

2.15 Frantsuzov, V. A., Artemyev, A. V., Shustov, P. I., and Zhang, X.-J. (2022), Marginal stability of whistler-mode waves in plasma with multiple electron populations, Phys. Plasmas, 29, 052901, https://doi.org/10.1063/5.0085953.

​

2.16 Chen, L., Zhang, X.-J., Artemyev, A. V., Angelopoulos, V., et al. (2022), Ducted Chorus Waves Cause Relativistic Electron Microbursts, Geophysical Research Letters, 49, e2021GL097559.

​

2.17 Shustov, P. I., Artemyev, A. V., Volokitin, A. S., Vasko, I. Y., Zhang, X.-J., and Petrukovich , A. A. (2022), Electron magnetosonic waves and sub-ion magnetic holes in the magnetotail plasma, Phys. Plasmas, 29, 012902, doi: 10.1063/5.0075938.

​

2.18 Artemyev, A. V., Shi, X., Liu, T. Z., Zhang, X.-J., et al. (2022), Electron resonant interaction with whistler waves around foreshock transients and the bow shock behind the terminator, Journal of Geophysical Research: Space Physics, 127, e2021JA029820.

3 / Full list

Please refer to the PI's google scholar page for a full list of publications from the group: https://scholar.google.com/citations?hl=en&user=P-0lqcAAAAAJ

bottom of page